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ABSTRACT

A new methodology for aromatic difluoromethylation is described. Aryl iodides reacted with R-silyldifluoroacetates upon treatment with copper
catalyst in DMSO or DME to give the corresponding aryldifluoroacetates in moderate to good yields. The subsequent hydrolysis of aryl-
difluoroacetates and KF-promoted decarboxylation afforded a variety of difluoromethyl aromatics.

Fluorinated organic compounds play a key role in the
remarkable progress of medicinal, agricultural, and mate-
rial sciences.1 Difluoromethylene compounds have been
considerable synthetic targets because of their wide
utility.2,3 Among them, difluoromethylated aromatic com-
pounds (Ar�CF2H) have received a great deal of attention
in the design and development of bioactive agents.4,5 For
instance, certain difluoromethylated aromatics show poten-
tial inhibitory activities against VanX (a zinc-dependent

D-Ala-D-Ala dipeptidase)6 and CETP (cholesteryl ester
transfer protein).7 Although fluorination of aromatic al-
dehydes (Ar�CHO) by the use of a nucleophilic fluorinat-
ing agent such as SF4, DAST, and its derivatives is an
orthodox method to construct Ar�CF2H skeletons,8,9 an
alternative approaches for selective introduction of CF2H
groups into aromatic compounds have been a topic of
considerable interest.
Fluoroalkyl cross-coupling is one of the most versatile

methods to produce fluoromethylated aromatics. Copper-
mediated cross-coupling reactions for aromatic trifluoro-
methylation have been widely investigated.10�14 Recently,
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we demonstrated that a small amount of CuI�phenan-
throline complex engenders the cross-coupling reactions of
aryl/heteroaryl iodides with CF3SiEt3

14a and fluoral
derivatives14b to deliver trifluoromethylated arenes. Tri-
fluoromethyl copper intermediates (CF3CuL) contribute
to these transformations (both stoichimetric and catalytic
in copper). Compared with the chemistry of trifluoro-
methylation, that of difluoromethylation has been much
less studied. The use of difluoromethyl copper (HCF2Cu)
is anticipated to yield difluoromethylated aromatic com-
pounds (Ar�CF2H). There have been few reports on the
reactions of HCF2Cu species with electrophiles such as
allylic, propargylic, alkynyl, and benzyl halides.15,16 How-
ever, to the best of our knowledge, the cross-coupling of
HCF2Cu with aromatic halides has never been accom-
plished due to the lack of thermal stability of HCF2Cu
species. Herein, we describe a new reaction sequence
leading to an efficient synthesis of difluoromethylated
aromatic compounds 2 from aryl iodides 1 via 2-aryl-
2,2-difluoroacetates 3 (Scheme 1).

Initially, Cu-promoted cross-coupling reactions of
aryl iodides 1 with R-silyldifluoroacetates (5)17 were
examined. A mixture of 4-iodobenzonitrile (1a) and ethyl
2-(trimethylsilyl)-2,2-difluoroacetate (5a) in DMF was
heated at 60 �C for 15 h in the presence of CuI (1.0 equiv)
andKF (1.2 equiv) to afford aryldifluoroacetate 3a in only
8% NMR yield (Table 1, entry 1). After the survey of
reaction media (entries 2�4), DMSO was found to be
an effective solvent for the Cu-mediated transforma-
tion (entry 4).
Other examples of the selective formation of 2-aryl-2,

2-difluoroacetates 3 are given in Table 1 (entries 5�14).
Upon treatment with a stoichiometric amount of CuI, a

wide repertoire of aromatic iodides 1 bearing electron-
withdrawing or -donating substituents underwent cross-
coupling reactions to provide the corresponding gem-
difluoroesters 3 in high yields (entries 4�14). En passant,
aryldifluoroacetates 3 have been used for several appli-
cations.18 To date, the reductive cross-coupling reactions
of bromo- or iododifluoroacetates with aryl harides by
the use of copper bronze are one of the most reliable
methods to prepare 2-aryl-2,2-difluoroacetates 3.19�22 In
these transformations, 2 equiv of copper are required to
generate Cu�CF2CO2R intermediates,19b which partici-
pate in cross-coupling with aryl halides. Compared to the

Scheme 1

Table 1. Cross-Coupling of Aryl Iodides 1 with R-Silyldifluoro-
acetate 5a (Stoichiometric in Copper)

entry Ar solvent yield/%a,b

1 4-NC-C6H4 (1a) DMF 8

2 4-NC-C6H4 (1a) CH3CN 12

3 4-NC-C6H4 (1a) DME 72

4 4-NC-C6H4 (1a) DMSO 88 (71)

5 3-NC-C6H4 (1b) DMSO 85 (69)

6 2-NC-C6H4 (1c) DMSO 57 (44)

7 4-O2N-C6H4 (1d) DMSO 41 (29)

8 4-EtO2C-C6H4 (1e) DMSO 81 (73)

9 3,4-Cl2-C6H3 (1f) DMSO 84 (73)

10 4-Br-C6H4 (1g) DMSO 76 (54)

11 4-Ph-C6H4 (1h) DMSO 78 (68)

12 Ph (1i) DMSO 75c (40)

13 4-EtO-C6H4 (1j) DMSO 78 (72)

14 2-quinolyl (1k) DMSO 88 (87)

aNMR yields, which were calculated by 19F NMR integration of
products 3 relative to the 2,2,2-trifluoroethanol internal standard. bThe
values in parentheses indicate the isolated yields of 3. cDetermined by
GC analysis using biphenyl as an internal standard.
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previously available methods, our transmetalation meth-
odology has several advantages: (i) the cross-coupling
participants 5 (2-silyl-2,2-difluoroacetates) are stable
and readily available directly from trifluoroacetates or
chlorodifluoroacetates;17,23 (ii) with a high level of func-
tional group tolerance, the reactions proceeded smoothly
under mild conditions; and (iii) fine-tuning of the reaction
conditions rendered a reaction catalytic in copper possible
(Scheme 2).24,25

When a mixture of 1a, Me3Si�CF2CO2Et (5a), and KF
in DMSOwas heated at 60 �C for 15 h in the presence of a
catalytic amount of CuI (0.2 equiv to 1a) under an argon
atmosphere, the cross-coupling reaction proceeded to give
ester 3a in 38% NMR yield. To improve the chemical
yieldsof cross-couplingusinga small amountofCuI, various
screening experiments were undertaken. After systematical
optimization, the use of 2-(triethylsilyl)-2,2-difluoroacetates
(TES-CF2CO2Et, 5b) instead of 5a as a coupling partner
and DME as a solvent was shown to be effective for the
selective formation of aryldifluoroacetate 3 in moderate
yields at a 20 mol % catalyst loading (Scheme 2).
Next, we explored decarboxylation of 2-aryl-2,2-difluo-

roacetic acids 4, which were readily obtained by alkaline
hydrolysis of esters 3. Upon heating a DMF solution of
aryl-2,2-difluoroacetic acid 4a at 170 �C (without any
catalyst), decarboxylation took place to give difluoro-
methyl arene 2a in 19% yield (Table 2, entry 1). Interest-
ingly, a significant change was observed when the reaction
was conducted in the presence of NaF to provide the
decarboxylation product 2a in 60% yield (entry 2). Heat-
ing of a DMF solution of 4a with KF26 (2 equiv to 4a) led
to formation of difluoromethyl arene 2a in 93% yield
(entry 4). The use of metal fluorides such as NaF, KF,
and CsF was found to be effective for decarboxylation of
4a (entries 2�7). In contrast, addition of KBr instead of
KF gave a poor result for decarboxylation (entry 7).

Hydrolysis of 3 with aqueous K2CO3 followed by dec-
arboxylation of 4 gave difluoromethyl arenes 2. Without

Scheme 2

aDetermined by 19F NMR (CF3CH2OH was used as internal
standard).

Table 2. Additive Effect on Decarboxylation of 4a

entry additive (amount) time/h yield/%a

1 none 1 19

2 NaF (1 equiv) 1 60

3 KF (1 equiv) 1 64

4 KF (2 equiv) 1 87

5 KF (2 equiv) 2 93

6 CsF (1 equiv) 1 95

7 KBr (1 equiv) 1 17

aDetermined by 19F NMR analysis (CF3CH2OH was used as
internal standard).
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isolation of the intermediate carboxylic acid 4a, difluor-
oester 3a was converted cleanly to 2a in 84% overall yield

via a hydrolysis�decarboxylation sequence. Representa-
tive results are summarized in Table 3. Under the opti-
mized reaction conditions, KF-promoted decarboxylation
workedwell for various aryldifluoroacetic acids 4.Difluor-
oesters 3a�f endowed with electron-withdrawing groups
on the aryl rings underwentKF-catalyzeddecarboxylation
smoothly to provide the desired difluoromethyl arene 2 in
good yields (entries 1�6). The decarboxylation reactions
of 3g and 3h possessing Br or phenyl groups required the
utilization of CsF under the harsh conditions (at 200 �C,
in NMP) (entries 7 and 8). In contrast, decarboxylation
of 3j bearing an electron-donating substituent such as an
ethoxy group on the aryl ring did not occur at 200 �C
even in the presence of CsF (entry 9). Furthermore,
heteroarene 3k partook in the KF-catalyzed decarboxy-
lation to afford difluoromethylated quinoline 2k in high
yield (entry 10).
In conclusion, we have developed a convenient route to

difluoromethyl arenes from aryl iodides. In the first cross-
coupling reactions, R-silyldifluoroacetates 5 served as a
donor of the difluoromethylene component to aromatics.
For the subsequent decarboxylation step,KFwas found to
be a good promoter. The stepwise conversion of the iodo
moieties in 1 to CF2H groups was successfully accom-
plished.27 Thereby, the design of the reaction sequences
enables the development of various practical transforma-
tions, with potential biological and chemical utility.
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Table 3. Synthesis of Difluoromethylated Aromatics 2
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